If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-8x-1056=0
a = 2; b = -8; c = -1056;
Δ = b2-4ac
Δ = -82-4·2·(-1056)
Δ = 8512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8512}=\sqrt{64*133}=\sqrt{64}*\sqrt{133}=8\sqrt{133}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8\sqrt{133}}{2*2}=\frac{8-8\sqrt{133}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8\sqrt{133}}{2*2}=\frac{8+8\sqrt{133}}{4} $
| x+3.8=7.10 | | x/3-10=-3 | | 500=116+3x | | 3m-2+5m-3+2m+7=58 | | -14=5=3u | | -.2x^2+7x-60=0 | | 3(x-)=5x-4+3(7-) | | 3x-13=x+39 | | -14+6b+7-2b=1+6b | | 2x^2-8x=1056 | | 9-6a-24a=0 | | 4x-3(45-x)=159 | | 9·x+5·x=53-11 | | 7x-36=5x-1=x+9 | | 5x8=-42 | | 14+x=37 | | 2560/0.8=s | | 10x-7x=36 | | y-32=7 | | 98=y+34 | | 5x-9=7x=5 | | 4x+12=15-7x | | 4^(x-1)=22 | | x^2+(x+3)^2=18 | | 8+6k=20 | | 3x-5=19-(x-2)=-6 | | -6+2r=4 | | 3(k–17)=6 | | 50x=6x+3000 | | 16j+60=400 | | 4x+13=-3x-6 | | 8=6k=20 |